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1 Rayleigh quotient

Definition 1.1. Let A € R™*™ be a symmetric matriz and let x € R™ be a nonzero vector. Their
Rayleigh quotient is defined as
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Theorem 1.2. Let A =VAVT be the eigendecomposition of A, where A = diag(\1, ..., \n), and \; >
Aj fori < j. Then max, R(A,x) = A1, the largest eigenvalue of A and the corresponding eigenvector v,
is the maximizer.

Proof. Let A= VAVT be the eigendecomposition of A. Define y = V2. Then
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Hence, to maximize the R(A, x) one needs to find a unit vector y which maximizes y? Ay.
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Observe that y = (1,0,...,0)T gives y" Ay = \;. Hence z = Vy = v;. O

2 Recap: principal component analysis

Let X = (X1,...,X4)T € R? be a random vector with zero mean and covariance ¥. In PCA we seek
for a projection w” X of X onto a direction w along which the variance is maximized. This is the first
principal direction. For each subsequent direction, we seek to maximize the variance in the orthogonal
complement of the subspace of previously selected components.

Recall that for a random vector Z and a constant vector a, both in R™, Var(a®z) = o Cov(Z)a.
Thus, formally, to find the first principal direction w, we maximize

Var ( w! X) _ Wi (3)
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Equation (3) is a Rayleigh quotient and hence its maximizer is the vector w € R? which is the eigenvector
of the covariance matrix ¥ with the largest eigenvalue (which we will denote by v1(X)). In the homework,
you will prove that since all principal components are orthogonal, subsequent directions are the next
eigenvectors.

Let X,, € R™™ be a collection of n ii.d samples of X7, and let ¥,, = %X};Xn be the sample
covariance matrix. Let X,, = UAVT be the SVD of X,,, so 3, = V(A2/n)V7T is the eigendecomposition
of ,,. The projection of the data onto the principal directions is then X'V. To map the data back to the
original coordinates one simply multiplies the projected data matrix from the right by V7. Observe the
PCA projection is X,V = UA, thus PCA and SVD (on centered data) are in fact equivalent procedures.

3 Aside: PCA signal recovery in spike models

Let X be m-dimensional multivariate normal random vector, with zero mean. Assume the covariance
Y =E(XXT)=1I;+ Buu’, where u € R? is a unit vector. The I; component of the covariance can be
viewed as noise (symmetric to all directions). We view u as a signal, indicating a high variance direction
in the data, and 5 > 0 is the signal strength Let 3,, be the sample covariance matrix. Observe that the
largest eigenvalue os 3 is (1 4+ ), and the corresponding eigenvector is u.

A result due to Baik, Ben-Arous and Peche (2005) specifies conditions on the recovery of the signal
as the sample size n approaches infinity. Specifically, let r = %. Then
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Together, these results imply that PCA recovers the largest component iff n > /3%' Specifically, the
sample size needs to be linear in the dimension, and as the signal is stronger, a smaller sample may
suffice.

4 Canonical correlation analysis

Let X € R?, Y € R™ be random vectors. In CCA we seek for linear combinations of (Xi,...,X,) and
(Y1,...,Y,,) which are maximally correlated. In the sample version, let X,, € R™? and Y, € R™™ be
collections of n i.i.d samples from each random variable {(x;,y;)}?_ ;. CCA seeks orthogonal bases for
col(X,,) and col(Y;,) such that the cross-correlations are maximized.

Let’s start with finding the first pair of projections, U := XTa,V := YTb. Assume that X and Y



both have zero mean. Then

p1 = corr(U,V)
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where Y x, Yy, Y xy are the covariance and cross-covariance matrices.

Next, we change the basis and define ¢ := Eia, d:= Eéb. Then
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Applying Cauchy-Schwartz inequality (z7y < ||z||||ly||) on the numerator of equation (4) we have
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where equality holds iff X *¥y x¥*c and d are in the same direction. Hence in that case
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Equation (5) is a Rayleigh quotient, hence its maximizer is ¢ = v1(2 > ZXYZ;IEYXEX2) (i.e., the
eigenvector corresponding to the largest eigenvalue). d is then obtained as a unit vector in the direction
of Xy Zy xX e Slmllarly, by reversing the order of x and y in the above process we get that d =
vl(Z ZYXE EXyZ ) and c is then obtained as a umt vector in the direction of X EXyZ 2d
Finally, reversing the change of variables we have a = % X2 cand b = Yz d. The projected variables are
then U = a7 X and V = bTY. To obtain the next pairs U;, V;,i = 2,...,min{m, n}, we would like each

new canonical directions to be uncorrelated with previous ones, hence the subsequent eigenvectors are
used (see homework).



