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1 Rayleigh quotient

Definition 1.1. Let A ∈ Rm×m be a symmetric matrix and let x ∈ Rm be a nonzero vector. Their
Rayleigh quotient is defined as

R(A, x) =
xTAx

xTx
. (1)

Theorem 1.2. Let A = V ΛV T be the eigendecomposition of A, where Λ = diag(λ1, . . . , λm), and λi ≥
λj for i < j. Then maxx R(A, x) = λ1, the largest eigenvalue of A and the corresponding eigenvector v1
is the maximizer.

Proof. Let A = V ΛV T be the eigendecomposition of A. Define y = V Tx. Then

R(A, x) =
xTAx

xTx

=
xTV ΛV Tx

xTV V Tx

=
yTΛy

yT y
. (2)

Hence, to maximize the R(A, x) one needs to find a unit vector y which maximizes yTΛy.

yTΛy =

m∑
i=1

y2i λi ≤ λ1

m∑
i=1

y2i = λ1.

Observe that y = (1, 0, . . . , 0)T gives yTΛy = λ1. Hence x = V y = v1.

2 Recap: principal component analysis

Let X = (X1, . . . , Xd)
T ∈ Rd be a random vector with zero mean and covariance Σ. In PCA we seek

for a projection wTX of X onto a direction w along which the variance is maximized. This is the first
principal direction. For each subsequent direction, we seek to maximize the variance in the orthogonal
complement of the subspace of previously selected components.

Recall that for a random vector Z and a constant vector a, both in Rm, Var(aTx) = aT Cov(Z)a.
Thus, formally, to find the first principal direction w, we maximize

Var

(
wT

∥w∥
X

)
=

wTΣw

wTw
. (3)
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Equation (3) is a Rayleigh quotient and hence its maximizer is the vector w ∈ Rd which is the eigenvector
of the covariance matrix Σ with the largest eigenvalue (which we will denote by v1(Σ)). In the homework,
you will prove that since all principal components are orthogonal, subsequent directions are the next
eigenvectors.

Let Xn ∈ Rn×m be a collection of n i.i.d samples of XT , and let Σn = 1
nX

T
n Xn be the sample

covariance matrix. Let Xn = UΛV T be the SVD of Xn, so Σn = V (Λ2/n)V T is the eigendecomposition
of Σn. The projection of the data onto the principal directions is thenXT

n V . To map the data back to the
original coordinates one simply multiplies the projected data matrix from the right by V T . Observe the
PCA projection is XnV = UΛ, thus PCA and SVD (on centered data) are in fact equivalent procedures.

3 Aside: PCA signal recovery in spike models

Let X be m-dimensional multivariate normal random vector, with zero mean. Assume the covariance
Σ = E(XXT ) = Id + βuuT , where u ∈ Rd is a unit vector. The Id component of the covariance can be
viewed as noise (symmetric to all directions). We view u as a signal, indicating a high variance direction
in the data, and β ≥ 0 is the signal strength Let Σn be the sample covariance matrix. Observe that the
largest eigenvalue os Σ is (1 + β), and the corresponding eigenvector is u.

A result due to Baik, Ben-Arous and Peche (2005) specifies conditions on the recovery of the signal
as the sample size n approaches infinity. Specifically, let r = d

n . Then

P

{
lim
n→∞

λ1(Σn) =

{
(1 +

√
r)

2
, if β ≤

√
r

(β + 1)(1 + r
β ), if β ≥

√
r

}
= 1.

In addition,

P

 lim
n→∞

⟨v1(Σn), u⟩ =

0, if β ≤
√
r

1− r
β2

1+ r
β2

, if β ≥
√
r

 = 1.

Together, these results imply that PCA recovers the largest component iff n ≥ d
β2 . Specifically, the

sample size needs to be linear in the dimension, and as the signal is stronger, a smaller sample may
suffice.

4 Canonical correlation analysis

Let X ∈ Rd, Y ∈ Rm be random vectors. In CCA we seek for linear combinations of (X1, . . . , Xn) and
(Y1, . . . , Ym) which are maximally correlated. In the sample version, let Xn ∈ Rn×d and Yn ∈ Rn×m be
collections of n i.i.d samples from each random variable {(xi, yi)}ni=1. CCA seeks orthogonal bases for
col(Xn) and col(Yn) such that the cross-correlations are maximized.

Let’s start with finding the first pair of projections, U := XTa, V := Y T b. Assume that X and Y
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both have zero mean. Then

ρ1 := corr(U, V )

=
E
[
UTV

]√
E [UTU ]

√
E [V TV ]

=
E
[
aTXY T b

]√
E [aTXXTa]

√
E [bTY Y T b]

=
aTΣXY b√

aTΣXa
√

bTΣY b
,

where ΣX ,ΣY ,ΣXY are the covariance and cross-covariance matrices.

Next, we change the basis and define c := Σ
1
2

Xa, d := Σ
1
2

Y b. Then

ρ1 =
cTΣ

− 1
2

X ΣXY Σ
− 1

2

Y d√
cT c

√
dT d

. (4)

Applying Cauchy-Schwartz inequality (xT y ≤ ∥x∥∥y∥) on the numerator of equation (4) we have(
cTΣ

− 1
2

X ΣXY Σ
− 1

2

Y

)
d ≤

(
cTΣ

− 1
2

X ΣXY Σ
− 1

2

Y Σ
− 1

2

Y ΣY XΣ
− 1

2

X c
) 1

2 √
dT d,

where equality holds iff X
− 1

2

Y ΣY XΣ
− 1

2

X c and d are in the same direction. Hence in that case

ρ21 =
cTΣ

− 1
2

X ΣXY Σ
−1
Y ΣY XΣ

− 1
2

X c

cT c
. (5)

Equation (5) is a Rayleigh quotient, hence its maximizer is c = v1(Σ
− 1

2

X ΣXY Σ
−1
Y ΣY XΣ

− 1
2

X ) (i.e., the
eigenvector corresponding to the largest eigenvalue). d is then obtained as a unit vector in the direction

of X
− 1

2

Y ΣY XΣ
− 1

2

X c. Similarly, by reversing the order of x and y in the above process we get that d =

v1(Σ
− 1

2

Y ΣY XΣ−1
X ΣXY Σ

− 1
2

Y ), and c is then obtained as a unit vector in the direction of X
− 1

2

X ΣXY Σ
− 1

2

Y d.

Finally, reversing the change of variables we have a = Σ
− 1

2

X c and b = Σ
− 1

2

Y d. The projected variables are
then U = aTX and V = bTY . To obtain the next pairs Ui, Vi, i = 2, . . . ,min{m,n}, we would like each
new canonical directions to be uncorrelated with previous ones, hence the subsequent eigenvectors are
used (see homework).
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